Call us toll free: (317)727-9173
Top notch Multipurpose WordPress Theme!

Dietary Supplement Label Review Checklist

by NaturPro in Uncategorized Comments: 0

The Food & Drug Administration (FDA) has specific rules for labeling and claims related to dietary supplements on packaging, marketing, websites, inserts and other promotional materials. If a label states a false or misleading claim, FDA, other regulatory agencies or class-action attorneys may file warning letters or lawsuits.

Dietary Supplement Label Review Checklist

⊗ PACKAGING REQUIREMENTS

Five general requirements for labels include: 1) the statement of identity (name of the dietary supplement), 2) the net quantity of contents statement (amount of the dietary supplement), 3) the nutrition labeling (Supplement Facts Panel), 4) the ingredient list, and 5) the name and place of business of the manufacturer, packer, or distributor.

⊗ LABEL STATEMENTS

You must place all required label statements either on the front label panel (the principal display panel) or on the information panel (usually the label panel immediately to the right of the principal display panel, as seen by theconsumer when facing the product), unless otherwise specified by regulation(i.e., exemptions).

⊗ SUPPLEMENT FACTS PANEL

Total calories, calories from fat, total fat, saturated fat, cholesterol, sodium, totalcarbohydrate, dietary fiber, sugars, protein, vitamin A, vitamin C, calcium, andiron must be listed when they are present in measurable amounts. Calories from saturated fat and the amount of polyunsaturated fat, monounsaturated fat, soluble fiber, insoluble fiber, sugar alcohol, and other carbohydrate may be declared, but they must be declared when a claim is made about them.

⊗ INGREDIENT LIST

When present, you must place the ingredient list on dietary supplementsimmediately below the nutrition label, or if there is insufficient space belowthe nutrition label, immediately contiguous and to the right of the
nutrition label.

⊗ WARNING STATEMENT

FDA requires warning statements related to safety and special precautions that, if not followed, could make the product unsafe.

⊗ UNITS OF MEASUREMENT

Proper units of measurement must be used, for example milligrams (mg), micrograms (mcg) or other appropriate units

⊗ PERCENTAGE DAILY VALUE (DV)

The % DV must be declared for all dietary ingredients for which FDA has established Daily Values, except that 1) the percent for protein may be omitted, and 2) on the labels of dietary supplements to be used by infants, children less than 4 years of age, or pregnant or lactating women, you must not list any percent for total fat, saturated fat, cholesterol, total carbohydrate,dietary fiber, vitamin K, selenium, manganese, chromium, molybdenum,chloride, sodium, or potassium.

⊗ DOMESTIC ADDRESS OR PHONE NUMBER

The label of a dietary supplement being marketed in the United States must include a domestic address or domestic phone number through which the responsible person may receive a report of a serious adverse event with such dietary supplement. If the label does not include the required domestic address or phone number, the dietary supplement is misbranded.

⊗ UPC BAR CODE

The UPC bar code may be obtained from the Uniform Code Council (www.uc-council.org)

⊗ NATURAL AND ARTIFICIAL FLAVORS

You must declare these ingredients in ingredient lists by using either specific common or usual names or by using the declarations  “natural flavor” or “artificial flavor,” or any combination thereof.

⊗ CHEMICAL PRESERVATIVES

You must list the common or usual name of the preservative, which may be followed by a description that explains its function e.g., “preservative,” “to retard spoilage,”“a mold inhibitor,” “to help protect flavor,” or “to promote color retention.”

⊗ OTHER DIETARY INGREDIENTS

You must list “other dietary ingredients” by common or usual name in acolumn or linear display. FDA has not specified an order that you must follow. You must list the quantitative amount by weight per serving immediately following the name of the dietary ingredient or in a separate column. You must place a symbol in the column for “% Daily Value” that refers to the footnote “Daily Value Not Established,” except that the symbol must follow the weight when you do not use the column format.

⊗ LIQUID EXTRACTS

You must list liquid extracts using the volume or weight of the total extract and the condition of the starting material prior to extraction when it was fresh. You may include information on the concentration of the dietary ingredient and the solvent used. The solvent must be identified in either the nutrition label or ingredient list.

⊗ DRIED EXTRACTS

For dietary ingredients that are extracts from which the solvent has been removed, you must list the weights of the dried extracts.

⊗ CONSTITUENTS

You may list constituents of a dietary ingredient indented under the dietary ingredient and followed by their quantitative amounts by weight per serving. You may declare the constituents in a column or in a linear display.

⊗ PROPRIETARY BLENDS

You must identify proprietary blends by use of the term “Proprietary Blend” or an appropriately descriptive term or fanciful name. On the same line, you must list the total weight of all “other dietary ingredients” contained in the blend. Indented underneath the name of the blend, you must list the “other dietary ingredients” in the blend, either in a column or linear fashion, in descending order of predominance by weight. These ingredients should be followed by a symbol referring to the footnote “Daily Value Not Established.”Dietary ingredients having RDIs or DRVs must be listed separately and the individual weights declared.

⊗ PRODUCT CLAIMS

Claims come in four basic varieties:

  • structure/function claims
  • disease claims
  • health claims and qualified health claims
  • content claims

Basically, dietary supplements cannot make “disease” claims (for example: “treats cancer”). Dietary supplements that make disease claims are considered by FDA as drugs.

Dietary supplements can make “structure/function” claims (for example, “calcium builds strong bones”). A structure/function claim describes the product’s role in maintaining the “structure or function of the body,” or “general well-being.”

The Federal Trade Commission (“FTC”) has overlapping jurisdiction with the federal Food and Drug Administration (“FDA”), and focuses more on whether advertising is truthful, or false and misleading. Thus, it is important to respect nuanced labeling rules, including those regarding the statement of the identity.

⊗HIGH POTENCY CLAIMS

The regulation states that the term “high potency” may be used in a claim on the label or in labeling to describe individual vitamins or minerals thatare present at 100 percent or more of the Reference Daily Intakes (RDI) per reference amount customarily consumed (21 CFR 101.54(f)(1)(i)). This means a supplement may be labeled as “high potency” for each nutrient(s) that is present at 100% of the RDI per serving.

⊗ ANTIOXIDANT NUTRIENT CONTENT CLAIMS

A claim that describes the level of antioxidant nutrients present in a food is a nutrient content claim and may be used on the label or in the labeling of a food when the conditions of use in the regulation are met (21 CFR 101.54(g)).

The antioxidant nutrient must meet the requirements for nutrient content claims in 21 CFR 101.54.

⊗SUGAR-FREE CLAIMS

A dietary supplement may include claims in labeling such as “sugar free,” “no sugar,” or other claims provided it meets all of the eligibility criteria set forth in the regulation.

Among other requirements, a food must be labeled as “low calorie” or “reduced calorie” or bear a relative claim of special dietary usefulness. However, a dietary supplement that is prohibited from bearing a “low calorie”or “reduced calorie” claim can still use a sugar-free claim provided it meets the “low calorie” requirement in 21 CFR 101.60.

⊗HIGH OR GOOD SOURCE CLAIMS

You may make a “high” claim when your dietary supplement contains atleast 20% of the Daily Value (DV) (i.e. the Reference Daily Intake (RDI) or Daily Reference Value (DRV)) of the nutrient that is the subject of the claim perreference amount customarily consumed. You may make a “good source”claim when your dietary supplement contains 10 to 19% of DV.

⊗ LOW OR FREE-FROM CLAIMS

If a similar dietary supplement is normally expected to contain a nutrient and your dietary supplement is specially processed, altered, formulated, or reformulated as to lower the amount of the nutrient in the food, remove the nutrient in the food, or not include the nutrient, then you are permitted to make a “low” or “free” claim as applicable.

⊗ LOW CALORIE CLAIMS

A “low calorie” claim may not be made on dietary supplements, except when an equivalent amount of a dietary supplement that the labeled dietary supplement resembles and for which it substitutes (e.g., another protein supplement), normally exceeds the definition for “low calorie.”

⊗ QUALIFIED HEALTH CLAIMS

FDA will permit the use of a qualified health claim provided that 1) FDA hasissued a letter stating the conditions under which we will consider exercisingenforcement discretion for the specific health claim, 2) the qualified claim is accompanied by an agency-approved disclaimer, and 3) the claim meets all the general requirements for health claims in 21 CFR 101.14, except forthe requirement that the evidence for the claim meet the validity standard for authorizing a claim, and the requirement that the claim be made in accordance with an authorizing regulation.

This guidance was prepared by the Office of Nutritional Products, Labeling and Dietary Supplements (ONPLDS) in the Center for Food Safety and Applied Nutrition (CFSAN) at the U.S. Food and Drug Administration.

Further reading:

Article: Food and Supplement Claims with Confidence

Food and Supplement Testing for Natural Products

Dietary Supplement Facts and Label Review FAQ

Dietary Supplement and Food Label Review

 

 

Dietary Supplement Facts and Label Review


There’s a lot of detail required for dietary supplement labels. Between supplement facts, structure-function health claims, and required formatting, it’s easy to overlook some of the FDA requirements for labeling.

 

Supplement Label Review Nutrition Facts

Supplement Label Review for Supplement Facts, Nutrition Labeling and Claims

Dietary Supplement Facts and Label Review

As part of our Label Review services, NaturPro helps clients develop, review and suggest improvements to dietary supplement labels, to ensure compliance with FDA regulatory requirements

Our clients enjoy the following benefits:

  1. Reliability: 100% accuracy and FDA compliance
  2. Experience: 15+ years of experience reviewing supplement labels
  3. Science-driven: Our reviews are based on the most current, reliable information, techniques and evidence
  4. Perspective: We have experience on the business side of the industry, so we know what the law is, whether it’s followed, and what is likely to happen if you don’t.

Updated 2018 Pricing:

Label Review: $400-600 ea. (Volume discounts may apply for similarly labeled products.)

Marketing Review: Contact for Pricing

Contact Us for a Free Estimate


FDA Dietary Supplement Labeling Guidelines

See our Dietary Supplement Label Review Checklist.

The following outlines some of the most frequently asked questions (FAQ) for dietary supplement labels:

  1. How are dietary supplements defined?Dietary supplements are defined, in part, as products (other than tobacco) intended to supplement the diet that bear or contain one or more of the following dietary ingredients:
    1. A vitamin;
    2. A mineral;
    3. An herb or other botanical;
    4. An amino acid;
    5. A dietary substance for use by man to supplement the diet by increasing the total dietary intake; or
    6. A concentrate, metabolite, constituent, extract, or a combination of any ingredient mentioned above.Further, dietary supplements are products intended for ingestion, are not represented for use as a conventional food or as a sole item of a meal or the diet, and are labeled as dietary supplements.
  2.  What label statements are required on the containers and packages of dietary supplements?Five statements are required: 1) the statement of identity (name of the dietary supplement), 2) the net quantity of contents statement (amount of the dietary supplement), 3) the nutrition labeling, 4) the ingredient list, and 5) the name and place of business of the manufacturer, packer, or distributor.
  3.  Where do I place the required label statements?You must place all required label statements either on the front label panel (the principal display panel) or on the information panel (usually the label panel immediately to the right of the principal display panel, as seen by the consumer when facing the product), unless otherwise specified by regulation (i.e., exemptions).
  4.  What label statements must I place on the principal display panel?You must place the statement of identity and the net quantity of contents statement on the principal display panel. Where packages bear alternate principal display panels, you must place this information on each alternate principal display panel.
  5.  How do I locate the principal display panel?The principal display panel of the label is the portion of the package that is most likely to be seen by the consumer at the time of display for retail purchase. Many containers are designed with two or more different surfaces that are suitable for use as the principal display panel. These are alternate principal display panels.
  6.  What label statements must I place on the information panel?You must place the “Supplement Facts” panel, the ingredient list, and the name and place of business of the manufacturer, packer, or distributor on the information panel if such information does not appear on the principal display panel, except that if space is insufficient, you may use the special provisions on the “Supplement Facts” panel in 21 CFR 101.36(i)(2)(iii) and (i)(5). See questions 46 and 56 in Chapter IV for more details.
  7.  Where is the information panel?The information panel is located immediately to the right of the principal display panel as the product is displayed to the consumer. If this panel is not usable, due to package design and construction (e.g. folded flaps), the panel immediately contiguous and to the right of this part may be used for the information panel. The information panel may be any adjacent panel when the top of a container is the principal display panel.
  8.  What name and address must I list on the label of my product?You must list the street address if it is not listed in a current city directory or telephone book, the city or town, the state, and zip code. You may list the address of the principal place of business in lieu of the actual address.
  9.  May I place intervening material on the information panel?No. You may not place intervening material, which is defined as label information that is not required (e.g., UPC bar code), between label information that is required on the information panel.
  10.  What type size, prominence and conspicuousness am I required to use on the principal display panel and the information panel?You are required to use a print or type size that is prominent, conspicuous and easy to read. The letters must be at least one-sixteenth (1/16) inch in height based on the lower case letter “o,” and not be more than three times as high as they are wide, unless you petition for an exemption in accordance with 21 CFR 101.2(f). The lettering must contrast sufficiently (it does not need to be black and white) with the background so as to be easy to read. See Chapter IV for the type size requirements for the nutrition label.
  11.  Do I need to specify the country of origin if my product, or the ingredients in my product, is not from the United States?Yes. Unless excepted by law, the Tariff Act requires that every article of foreign origin (or its container) imported into the United States conspicuously indicate the English name of the country of origin of the article.
  12. What is the nutrition label for a dietary supplement called?The nutrition label for a dietary supplement is called a “Supplement Facts” panel.
    1. You must list dietary ingredients without RDIs or DRVs in the “Supplement Facts” panel for dietary supplements. You are not permitted to list these ingredients in the “Nutrition Facts” panel for foods.
    2. You may list the source of a dietary ingredient in the “Supplement Facts” panel for dietary supplements. You cannot list the source of a dietary ingredient in the “Nutrition Facts” panel for foods.
    3. You are not required to list the source of a dietary ingredient in the ingredient statement for dietary supplements if it is listed in the “Supplement Facts” panel.
    4. You must include the part of the plant from which a dietary ingredient is derived in the “Supplement Facts” panel for dietary supplements. You are not permitted to list the part of a plant in the “Nutrition Facts” panel for foods.
    5. You are not permitted to list “zero” amounts of nutrients in the “Supplement Facts” panel for dietary supplements. You are required to list “zero” amounts of nutrients in the “Nutrition Facts” panel for food.How does “Supplement Facts” differ from “nutrition facts?”The major differences between “Supplement Facts” panel and “Nutrition Facts” panel are as follows:
  13. What information must I list in the “Supplement Facts” panel?You must list the names and quantities of dietary ingredients present in your product, the “Serving Size” and the “Servings Per Container.” However, the listing of “Servings Per Container” is not required when it is the same information as in the net quantity of contents statement. For example, when the net quantity of contents statement is 100 tablets and the “Serving Size” is one tablet, the “Serving Per Container” also would be 100 tablets and would not need to be listed.
  14. How must I display the “Supplement Facts” panel?The “Supplement Facts” nutrition information (referred to as a panel) must be enclosed in a box by using hairlines. The title, “Supplement Facts,” must be larger than all other print in the panel and, unless impractical, must be set full width of the panel. The title and all headings must be bolded to distinguish them from other information.
  15. How must I present the information in the “Supplement Facts” panel?You must present all information using the following:
    1. A single easy-to-read type style;
    2. All black or one color type, printed on a white or neutral contrasting background, whenever practical;
    3. Upper- and lowercase letters, except that you may use all uppercase lettering on small packages (i.e., packages having a total surface area available to bear labeling of less than 12 square inches);
    4. At least one point leading (i.e., space between lines of text); and
    5. Letters that do not touch.

  16. What are the type size requirements for the “Supplement Facts” panel?Except as provided for small and intermediate-sized packages, you must set information other than the title, headings, and footnotes in uniform type size no smaller than 8 point. You also must use a type size larger than all other print size in the nutrition label for the title “Supplement Facts.” You may set the column headings and footnotes in type no smaller than 6 point type. See the section on “Special Labeling Provisions” for the exceptions for small and intermediate-sized packages.
    For more information, visit FDA Dietary Supplement Labeling Guide

Food & Supplement Testing for Natural Products


Testing Foods, Supplements and Ingredients

NaturPro offers independent laboratory support for food & supplement testing for natural products.

Have natural product analysis questions? Contact Us..

Why Testing is Important: Supplement and natural product testing with a compliant laboratory is required by FDA for foods, dietary supplements and ingredients to ensure they meet standards for safety, quality and effectiveness. For example, identity, potency and purity are quality control parameters needed to legally sell a natural product as an ingredient, food or dietary supplement.

NaturPro Scientific is driven to achieve the right answers for our clients.  Some have even called us the UnLab. Why?

Being independent means that we do not own or have interest in any laboratory, which means we are free to pick from the top scientific experts for each type of test or analysis. As a result, we are truly able to work on behalf of our clients, to ensure that correct methods are used and results are obtained.


Natural Product and Supplement Testing Consultants

Natural Product and Supplement Testing Consultants

We know which labs are experienced with ginseng, but not with ginkgo — and this can mean a world of difference in test results.


11 reasons to use a supplement testing consultant for natural products:

  1. To ensure analytical methods used are valid and fit for purpose
  2. To make sure laboratories don’t take shortcuts with your sample
  3. To determine if results are precise and accurate
  4. To replicate the results of another lab
  5. To resolve out-of-specification test results
  6. To resolve disputes in data reports
  7. To determine if “dry-labbing” may be occurring
  8. To have an independent expert to review methods and results
  9. To perform due diligence on a supplier or partner
  10. To eliminate the potential for perceived conflict of interest when testing own products
  11. To qualify a lab as a good partnership choice.

3 main benefits of food and natural products testing consultants:

  1. Better analysis and testing validity  for reliable, replicable and defensible results.
  2. Fast turnaround and lower testing costs.
  3. Reduced retesting, rejections, production delays and product recalls.

Bottom Line – NaturPro knows the right methods and labs to use, and the right questions to ask. We know the shortcuts that testing labs can take, and how to prevent that from happening to you, to ensure testing gives the most scientific, accurate and defensible results possible.

 

 

 


Contact Us with your Testing Questions

AOAC ERP of the Year to Kombucha Alcohol Group

by NaturPro in Uncategorized Comments: 0

NaturPro Contributes to Expert Panel Receiving AOAC Award: “ERP of the Year” to Kombucha Alcohol Group

The AOAC Expert Review Panel (ERP) charged with reviewing methods of analysis for ethanol in kombucha initially met in September 2016 to review methods against AOAC SMPR 2016.001 (Determination of Ethanol in Kombucha). At this meeting, the ERP adopted an Official Method of Analysis for First Action status, AOAC 2016.12 (Determination of Ethanol in Kombucha) using gas chromatography with flame ionization detection (GC-FID). The selection and validation of this method was coordinated by NaturPro Scientific and performed by Covance Laboratories, Wisconsin.

kombucha tea testing alcohol ethanol

Method adopted for kombucha tea testing for alcohol in validated labs

AOAC states: “The ERP’s work directly impacts the resolution of urgent and key issues identified by industry, and serves as a forum where both the kombucha industry and government work together.

“The ERP was selected because its open and thorough scientific scrutiny of methods and its output clearly demonstrate the culmination of an industry-wide effort that facilitates regulatory and industry engagement for addressing urgent analytical disputes and facilitating trade. All ERP members receive the award, and publicly receiving the award on behalf of the group is the ERP chair, Sneh Bhandari.

“The Expert Review Panel (ERP) of the Year Award recognizes an ERP for achieving and completing signicant milestone(s) (e.g., Final report, First Action Method, Final Action Method), highlighted by some unique or particularly noteworthy aspect of a review panel report, such as innovative technology or application, breadth of applicability, critical need, difficult analysis, or timeliness.

“The report demonstrates significant merit as to the scope of the project, diversity of the panel, or an innovative approach to difficult analytical challenges. The report must have been submitted within the last 3 years.”

 

 

Dietary Supplement Testing and Analysis: Quality Control

by NaturPro in Uncategorized Comments: 0

Dietary Supplement Testing and Analysis: Quality Control

Dietary supplements are subject to FDA requirements for good manufacturing practices (cGMP) and quality control in the United States. cGMP require specifications for each ingredient and finished dietary supplement. The specifications list parameters for identity, purity, potency and other requirements for regulatory compliance. Each parameter on the specification must be tested with a scientifically valid method.

NaturPro Scientific, as an UnLab, partners with expert analytical laboratories to conduct specific testing on dietary supplements. Testing typically includes:

  • Physical characteristics (visual, color, odor, taste, density, mesh size)
  • Identity (matching an ingredient in a pass/fail fashion to a particular species of botanical or herb, or a chemical purity test)
  • Potency (concentration of active or marker compounds)
  • Purity (absence of impurities such as moisture, microbiology, pathogens, heavy metals, residual solvents, pesticides, mycotoxins)

The following are analytical principles or instruments that may be used for dietary supplement testing:

  • Karl Fischer
  • Ro-tap and particle size analysis
  • Titration
  • Gravimetry
  • Thin Layer Chromatography (TLC or HP-TLC)
  • High Performance Liquid Chromatography (HPLC)
  • Gas Chromatography with Flame Ionization Detection (GC-FID)
  • Gas Chromatography with Mass Spectrometry (GC-MS of GC-MS-MS)
  • Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
  • Total Aerobic Plate Count
  • Pathogens (Salmonella, E. Coli, Staph)

The following is a list of documentation and regulations requiring testing under cGMPs:

  • Documentation of the specifications established (21 CFR 111.95(b)(1))
  • Documentation of your qualification of a supplier for the purpose of relying on the supplier’s certificate of analysis (21 CFR 111.95(b)(2))
  • Documentation for why meeting in-process specifications, in combination with meeting component specifications, helps ensure that the dietary supplement meets the specifications for identity, purity, strength, and composition; and for limits on those types of contamination that may adulterate or may lead to adulteration of the finished batch of the dietary supplement (21 CFR 111.95(b)(3))
  • Documentation for why the results of appropriate tests or examinations for the product specifications that you selected for testing ensure that the dietary supplement meets all product specifications (21 CFR 111.95(b)(4))
  • Documentation for why any component and in-process testing, examination, or monitoring, and any other information, will ensure that a product specification that is exempted under 21 CFR 111.75(d) is met without verification through periodic testing of the finished batch, including documentation that the selected specifications tested or examined under 21 CFR 111.75 (c)(1) are not able to verify that the production and process control system is producing a dietary supplement that meets the exempted product specification and there is no scientifically valid method for testing or examining such exempted product specification at the finished batch stage (21 CFR 111.95(b)(5))

There are a number of sources of information for developing specifications and test methods for analysis of dietary supplements. The below is a partial list of references and resources:

  1. Dietary Supplement Ingredient Database, https://dietarysupplementdatabase.usda.nih.gov/
  2. Dietary Supplement Label Database, https://ods.od.nih.gov/factsheets/DietarySupplements-HealthProfessional/
  3. Dietary supplement laboratory quality assurance program: the first five exercises. Phillips MM, Rimmer CA, Wood LJ, Lippa KA, Sharpless KE, Duewer DL, Sander LC, Betz JM.  J AOAC Int 2011;94:803-14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173719/
  4. Heavy metals: analysis and limits in herbal dietary supplements, http://www.naturalhealthresearch.org/wp-content/uploads/2013/02/09_1214_AHPA_Heavy-Metals-White-Paper-Revised.pdf
  5. Pesticide Analytical Manual, Vol I, FDA. Source: http://www.fda.gov/downloads/Food/FoodScienceResearch/ucm113702.pdf
  6. Pesticide Analytical Manual, Vol II, FDA. Source: http://www.fda.gov/downloads/Food/FoodScienceResearch/ucm113721.pdf
  7. Quality assurance of cultivated and gathered medicinal plants. Mathe and Mathe, Source: http://www.mtk.nyme.hu/fileadmin/user_upload/kornyezet/Mathe/Quality_assurance.pdf
  8. Quality control methods for medicinal plant materials (1998) World Health Organization
  9. Recommendations for microbial limits in herbal products, American Herbal Products Association, http://www.ahpa.org/Portals/0/PDFs/Policies/14_0206_AHPA_micro_limits_comparisons.pdf
  10. Standardization of herbal medicines – A review. Kunle O.F. et al, (2012) Int. J Biodiv and Conserv. 4(3) 101-112. Source: http://www.academicjournals.org/article/article1380017716_Kunle%20et%20al.pdf
  11. USP Food Fraud Mitigation Guidance, http://www.usp.org/food/food-fraud-mitigation-guidance

 

Turmeric Supplement Testing — Curcumin Products

by NaturPro in Uncategorized Comments: 0

Laboratory testing of turmeric supplements and curcumin products is important for quality, safety, dosage and bioavailability. NaturPro Scientific offers testing and analysis consulting for turmeric, and works with expert research and quality control testing laboratories.

A number of analytical methods and monographs have been developed for turmeric to ensure bioavailability, consistency, potency and purity of curcumin products.


Turmeric Supplement Testing — Curcumin Products

We recommend all turmeric products have routine and/or periodic independent testing for the following parameters:

  1. Curcuminoids (curcumin) by HPLC
  2. Biological activity
  3. Bioavailability
  4. Heavy metals
  5. Microbiology and pathogens
  6. Residual solvents
  7. Pesticides
  8. Natural source by carbon radioisotope (if labeled as ‘turmeric’)
  9. Food allergens
  10. Sudan dyes

Traditional dosage forms listed by the EU Community Herbal Monograph include the following herbal preparations:

  1. Powdered herbal substance
  2. Comminuted herbal substance
  3. Tincture (Ratio of herbal substance to extraction solvent 1:10), extraction solvent ethanol 70% (v/v)
  4. Dry extract (DER 13-25:1), extraction solvent ethanol 96% (v/v)
  5. Dry extract (DER 5.5-6.5:1), extraction solvent ethanol 50% (v/v)
  6. Tincture (Ratio of herbal substance to extraction solvent 1:5), extraction solvent ethanol 70% (v/v)
    Other solvents are commonly used to extract curcuminoids.


The JECFA has developed a monograph on turmeric oleoresin:

“Obtained by solvent extraction of turmeric (Curcuma longa L.). Only the following solvents may be used in the extraction: acetone, dichloromethane, 1,2-dichloroethane, methanol, ethanol, isopropanol and light petroleum (hexanes).

The selection of a turmeric oleoresin of a particular composition is based on the intended use in food. In general, all turmeric oleoresins contain colouring matter and most contain flavouring matter but some oleoresins are processed to remove aromatic compounds. Commercial products include oleoresins (per se) and formulations in which oleoresin is diluted in carrier solvents and which may contain emulsifiers and antioxidants. Purified extracts of turmeric containing more than 90% total colouring matter are subject to specifications for “Curcumin”.

Turmeric Oleoresins are sold on the basis of “colour value” or “curcumin content”, which generally means the total content of the curcuminoid substances: (I) curcumin, (II) demethoxycurcumin and (III) bis- demethoxycurcumin.

The principle colouring components are:
I. 1,7-Bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene- 3,5-dione
II. 1-(4-Hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene- 3,5-dione
III. 1,7-bis(4-hydroxyphenyl)hepta-1,6-diene-3,5-dione

Turmeric Oleoresins, per se, are deep brownish-orange viscous oily fluids, pasty semisolids or hard amorphous solids containing 37-55% curcuminoids and up to 25% volatile oil. Diluted turmeric oleoresin formulations are, generally yellow solutions containing 6-15% curcuminoids and nil to 10% volatile oil.

Residual solvents limits:

Acetone : Not more than 30 mg/kg
Methanol: Not more than 50 mg/kg
Ethanol: Not more than 50 mg/kg
Isopropanol: Not more than 50 mg/kg
Dichloromethane and 1,2-dichloroethane: Not more than 30 mg/kg, singly or in combination

Light petroleum (hexanes): Not more than 25 mg/kg


The WHO monograph for medicinal plants for turmeric is excerpted below:

Rhizome (root) of Curcuma Longa L. (turmeric)

Definition

Rhizoma Curcumae Longae is the dried rhizome of Curcuma longa L. (Zingiberaceae) (1).

Dried rhizomes of Curcuma wenyujin Y.H. Lee et C. Ling, C. kwangsiensis S. Lee et C.F. Liang. and C. phaeocaulis Val. are also official sources of Radix Curcumae or Turmeric Root-Tuber in China (2).

Synonyms

Curcuma domestica Valeton., C. rotunda L., C. xanthorrhiza Naves, Amomum curcuma Jacq. (3–5).

Selected vernacular names

Acafrao, arqussofar, asabi-e-safr, avea, cago rerega, chiang-huang, common tumeric, curcum, curcuma, dilau, dilaw, Gelbwurzel, gezo, goeratji, haladi, haldi, haldu, haku halu, hardi, haridra, huang chiang, hsanwen, hurid, Indian saffron, jiânghuang, kaha, kakoenji, kalo haledo, khamin chan, khaminchan, kilunga kuku, kitambwe, kiko eea, koening, koenit, koenjet, kondin, kooneit, kunyit, kurcum, kurkum, Kurkumawurzelstock, luyang dilaw, mandano, manjano, manjal, nghe, nisha, oendre, pasupu, rajani, rame, renga, rhizome de curcuma, saffran vert, safran, safran des indes, skyer-rtsa, tumeric, tumeric root, tumeric rhizome, turmeric, ukon, ul gum, wong keong, wong keung, yellow root, yii-chin, zardchob (13, 6–14).

Description

Perennial herb up to 1.0 m in height; stout, fleshy, main rhizome nearly ovoid (about 3 cm in diameter and 4 cm long). Lateral rhizome, slightly bent (1cm × 2–6cm), flesh orange in colour; large leaves lanceolate, uniformly green, up to 50cm long and 7–25cm wide; apex acute and caudate with tapering base, petiole and sheath sparsely to densely pubescent. Spike, apical, cylindrical, 10– 15cm long and 5–7 cm in diameter. Bract white or white with light green upper half, 5–6 cm long, each subtending flowers, bracteoles up to 3.5 cm long. Pale yellow flowers about 5cm long; calyx tubular, unilaterally split, unequally toothed; corolla white, tube funnel shaped, limb 3-lobed. Stamens lateral, petaloid, widely elliptical, longer than the anther; filament united to anther about the middle of the pollen sac, spurred at base. Ovary trilocular; style glabrous. Capsule ellipsoid. Rhizomes orange within (1, 4, 6, 15).

Plant material of interest: dried rhizome

General appearance

The primary rhizome is ovate, oblong or pear-shaped round turmeric, while the secondary rhizome is often short-branched long turmeric; the round form is about half as broad as long; the long form is from 2–5cm long and 1–1.8cm thick; externally yellowish to yellowish brown, with root scars and annulations, the latter from the scars of leaf bases; fracture horny; internally orangeyellow to orange; waxy, showing a cortex separated from a central cylinder by a distinct endodermis (1, 9, 13).

Organoleptic properties

Odour, aromatic; taste, warmly aromatic and bitter (1, 9, 13). Drug when chewed colours the saliva yellow (9).

Microscopic characteristics

The transverse section of the rhizome is characterized by the presence of mostly thin-walled rounded parenchyma cells, scattered vascular bundles, defi- nite endodermis, a few layers of cork developed under the epidermis and scattered oleoresin cells with brownish contents. The cells of the ground tissue are also filled with many starch grains. Epidermis is thin walled, consisting of cubical cells of various dimensions. The cork cambium is developed from the subepidermal layers and even after the development of the cork, the epidermis is retained. Cork is generally composed of 4–6 layers of thin-walled brickshaped parenchymatous cells. The parenchyma of the pith and cortex contains curcumin and is filled with starch grains. Cortical vascular bundles are scattered and are of collateral type. The vascular bundles in the pith region are mostly scattered and they form discontinuous rings just under the endodermis. The vessels have mainly spiral thickening and only a few have reticulate and annular structure (1, 8, 9).

Powdered plant material

Coloured deep yellow. Fragments of parenchymatous cells contain numerous altered, pasty masses of starch grains coloured yellow by curcumin, fragments of vessels; cork fragments of cells in sectional view; scattered unicellular trichomes; abundant starch grains; fragments of epidermal and cork cells in surface view; and scattered oil droplets, rarely seen (1, 13).

Geographical distribution

Cambodia, China, India, Indonesia, Lao People’s Democratic Republic, Madagascar, Malaysia, the Philippines, and Viet Nam (1, 13, 16). It is exten- sively cultivated in China, India, Indonesia, Thailand and throughout the tropics, including tropical regions of Africa (1, 7, 13, 16).

General identity tests

Macroscopic and microscopic examinations; test for the presence of curcuminoids by colorimetric and thin-layer chromatographic methods (1).

Purity tests

Microbiology

The test for Salmonella spp. in Rhizoma Curcumae Longae products should be negative. The maximum acceptable limits of other microorganisms are as follows (17–19). For preparation of decoction: aerobic bacteria-not more than 107/g; fungi-not more than 105/g; Escherichia coli-not more than 102/g. Preparations for internal use: aerobic bacteria-not more than 105/g or ml; fungi-not more than 104/g or ml; enterobacteria and certain Gram-negative bacteria-not more than 103/g or ml; Escherichia coli-0/g or ml.

Foreign organic matter

Not more than 2% (1, 9).

Total ash

Not more than 8.0% (1, 15).

Acid-insoluble ash

Not more than 1% (1, 9, 15).

Water-soluble extractive

Not less than 9.0% (1).

Alcohol-soluble extractive

Not less than 10% (1).

Moisture

Not more than 10% (1).

Pesticide residues

To be established in accordance with national requirements. Normally, the maximum residue limit of aldrin and dieldrin in Rhizoma Curcumae Longae is not more than 0.05 mg/kg (19). For other pesticides, see WHO guidelines on quality control methods for medicinal plants (17) and guidelines for predicting dietary intake of pesticide residues (20).

Heavy metals

Recommended lead and cadmium levels are not more than 10 and 0.3mg/kg, respectively, in the final dosage form of the plant material (17).

Radioactive residues

For analysis of strontium-90, iodine-131, caesium-134, caesium-137, and plutonium-239, see WHO guidelines on quality control methods for medicinal plants (17).

Other purity tests

Chemical tests to be established in accordance with national requirements.

Chemical assays

Not less than 4.0% of volatile oil, and not less than 3.0% of curcuminoids (1). Qualitative analysis by thin-layer and high-performance liquid chromatography (1, 21) and quantitative assay for total curcuminoids by spectrophotometric (1, 22) or by high-performance liquid chromatographic methods (23, 24).

Major chemical constituents

Pale yellow to orange-yellow volatile oil (6%) composed of a number of monoterpenes and sesquiterpenes, including zingiberene, curcumene, α- and β- turmerone among others. The colouring principles (5%) are curcuminoids, 50–60% of which are a mixture of curcumin, monodesmethoxycurcumin and bisdesmethoxycurcumin (1, 6, 25). Representative structures of curcuminoids are presented below.

Dosage forms

Powdered crude plant material, rhizomes (1, 2), and corresponding preparations (25). Store in a dry environment protected from light. Air dry the crude drug every 2–3 months (1).

Medicinal uses

Uses supported by clinical data

The principal use of Rhizoma Curcumae Longae is for the treatment of acid, flatulent, or atonic dyspepsia (26–28).

Uses described in pharmacopoeias and in traditional systems of medicine

Treatment of peptic ulcers, and pain and inflammation due to rheumatoid arthritis (2, 11, 14, 29, 30) and of amenorrhoea, dysmenorrhoea, diarrhoea, epilepsy, pain, and skin diseases (2, 3, 16).

Uses described in folk medicine, not supported by experimental or clinical data

The treatment of asthma, boils, bruises, coughs, dizziness, epilepsy, haemorrhages, insect bites, jaundice, ringworm, urinary calculi, and slow lactation (3, 7, 8–10, 14).

 

 

 

Echinacea Supplement Testing — Echinacea purpurea, E. angustifolia

by NaturPro in Uncategorized Comments: 0

Echinacea Supplement Testing — Echinacea purpurea, E. angustifolia

Echinacea testing is critical to determining the quality, identity and potency of an echinacea material. NaturPro Scientific offers testing consulting for echinacea supplements.

Echinacea analysis and testing is based mainly on the WHO  monograph on Echinacea that is excerpted in part below, and the USP monograph.

 

Herba Echinaceae Purpureae

Definition

Herba Echinaceae Purpureae consists of the fresh or dried aerial parts of Echinacea purpurea (L.) Moench harvested in full bloom (Asteraceae) (1).

Synonyms

Brauneria purpurea (L.) Britt., Echinacea intermedia Lindl., E. purpurea (L.) Moench f., E. purpurea (L.) Moench var. arkansana Steyerm., E. speciosa Paxt., Rudbeckia purpurea L., R. hispida Hoffm., R. serotina Sweet (2, 3).

Asteraceae are also known as Compositae.

Selected vernacular names

Coneflower, purple coneflower herb, purpurfarbener Igelkopf, purpurfarbene Kegelblume, purpurfarbener Sonnenhut, red sunflower, roter Sonnenhut (48).

Description

A hardy, herbaceous perennial. Stems erect, stout, branched, hirsute or glabrous, 60–180 cm high; basal leaves ovate to ovate-lanceolate, acute, coarsely or sharply serrate, petioles up to 25 cm long, blades to 20 cm long and 15cm wide, blade abruptly narrowing to base, often cordate, decurrent on petiole, 3–5 veined; cauline leaves petiolate below, sessile above, 7–20 cm long, 1.5–8cm broad, coarsely serrate to entire, rough to the touch on both surfaces; phyllaries linear-lanceolate, attenuate, entire, pubescent on outer surface, ciliate, passing into the chaff; heads 1.5–3cm long and 5–10mm broad, purplish; pales 9– 13mm long, awn half as long as body; disc corollas 4.5–5.5mm long, lobes 1mm long; achene 4–4.5 mm long, pappus a low crown of equal teeth; pollen grains yellow, 19–21µm in diameter; haploid chromosome number n = 11 (2).

Plant material of interest: fresh or dried aerial parts

General appearance

The macroscopic characteristics of Herba Echinaceae Purpureae are as described above under Description. An abbreviated description is currently unavailable.

Organoleptic properties

Mild, aromatic odour; initially sweet taste that quickly becomes bitter.

Microscopic characteristics

A description of the microscopic characteristics of a cross-section of the aerial parts of the plant is currently unavailable.

Powdered plant material

A description of the powdered plant material is currently unavailable.

Geographical distribution

Echinacea purpurea is native to the Atlantic drainage area of the United States of America and Canada, but not Mexico. Its distribution centres are in Arkansas, Kansas, Missouri, and Oklahoma in the United States of America (2). Echinacea purpurea has been introduced as a cultivated medicinal plant in parts of north and eastern Africa and in Europe (9).

General identity tests

Macroscopic examination (2) and thin-layer chromatography and highperformance liquid chromatography (4, 10–13) of the lipophilic constituents and chicoric acid in methanol extracts.

Purity tests

Microbiology

The test for Salmonella spp. in Herba Echinaceae Purpureae should be negative. The maximum acceptable limits of other microorganisms are as follows (1416). For preparation of decoction: aerobic bacteria-not more than 107/g; fungi-not more than 105/g; Escherichia coli-not more than 102/g. Preparations for internal use: aerobic bacteria-not more than 105/g or ml; fungi-not more than 104/g or ml; enterobacteria and certain Gram-negative bacteria-not more than 103/g or ml; Escherichia coli-0/g or ml. Preparations for external use: aerobic bacteria-not more than 102/g or ml; fungi-not more than 102/g or ml; enterobacteria and certain Gram-negative bacteria-not more than 101/g or ml.

Pesticide residues

To be established in accordance with national requirements. Normally, the maximum residue limit of aldrin and dieldrin in Herba Echinaceae Purpureae is not more than 0.05 mg/kg (16). For other pesticides, see WHO guidelines on quality control methods for medicinal plants (14) and guidelines for predicting dietary intake of pesticide residues (17).

Heavy metals

Recommended lead and cadmium levels are no more than 10 and 0.3mg/kg, respectively, in the final dosage form of the plant material (14).

Radioactive residues

For analysis of strontium-90, iodine-131, caesium-134, caesium-137, and plutonium-239, see WHO guidelines on quality control methods for medicinal plants (14).

Other purity tests

Chemical tests and tests for acid-insoluble ash, dilute ethanol-soluble extractive, foreign organic matter, moisture, total ash, and water-soluble extractive to be established in accordance with national requirements.

Chemical assays

For essential oil (0.08–0.32%); chicoric acid (1.2–3.1%) (4). Quantitative analysis of echinacoside, chicoric acid, isobutylamides, and other constituents by high-performance liquid chromatography (4). Quantitative analysis of alkamides and caffeic acid derivatives by thin-layer chromatography and highperformance liquid chromatography (4, 12).

Major chemical constituents

A number of chemical entities have been identified, including alkamides, polyalkenes, polyalkynes, caffeic acid derivatives, and polysaccharides (3, 5–9).

The volatile oil contains, among other compounds, borneol, bornyl acetate, pentadeca-8-(Z)-en-2-one, germacrene D, caryophyllene, and caryophyllene epoxide.

Isobutylamides of C11–C16 straight-chain fatty acids with olefinic or acetylenic bonds (or both) are found in the aerial parts of Herba Echinaceae Purpureae, with the isomeric dodeca-(2E,4E,8Z,10E/Z)-tetraenoic acid isobutylamides.

The caffeic acid ester derivative chicoric acid is the major active compound of this class found in the aerial parts of Echinacea purpurea, with a concentration range of 1.2–3.1%. Chicoric acid methyl ester and other derivatives are also present.

Polysaccharide constituents from Herba Echinaceae Purpureae are of two types: a heteroxylan of average relative molecular mass about 35 000 (e.g. PS-I), and an arabinorhamnogalactan of average relative molecular mass about 45000 (e.g. PS-II).

Other constituents include trace amounts of pyrrolizidine alkaloids (tussilagine (0.006%) and isotussilagine). At these concentrations, the alkaloids are considered to be non-toxic (8). Furthermore, because these alkaloids lack the 1,2-unsaturated necine ring of alkaloids such as senecionine (structure in box) from Senecio species, they are considered to be non-hepatotoxic (3).

Dosage forms

Powdered aerial part, pressed juice and galenic preparations thereof for internal and external use (1, 3).

Medicinal uses

Uses supported by clinical data

Herba Echinaceae Purpureae is administered orally in supportive therapy for colds and infections of the respiratory and urinary tract (1, 3, 5, 7, 8, 18). Beneficial effects in the treatment of these infections are generally thought to be brought about by stimulation of the immune response (3, 5, 7). External uses include promotion of wound healing and treatment of inflammatory skin conditions (1, 3, 5, 7, 8, 9, 19).

Uses described in pharmacopoeias and in traditional systems of medicine

None.

Uses described in folk medicine, not supported by experimental or clinical data

Other medical uses claimed for Herba Echinaceae Purpureae include treatment of yeast infections, side-effects of radiation therapy, rheumatoid arthritis, blood poisoning, and food poisoning (1, 5, 7, 9).


The following summarizes some current methods for identifying  from a published review on echinacea:

“Alkamides, caffeic acid derivatives, and polysaccharides have been considered important constituents of the plant. A number of studies revealed that alkamides are involved in the immunomodulatory properties of Echinacea extracts in vitroand in vivo.[4,5] Additionally, caffeic acid is found in some species of Echinacea and could be applied toward authentication and quality control of the plant extracts. The polysaccharides play an important role in the anti-inflammatory effect of Echinacea preparations.[6] Taxonomic, chemical, pharmacological, and clinical characteristics of some species of the Echinacea genus including E. angustifolia, E. pallida, and E. purpurea were reviewed in previous papers.[1,7] Medicinal properties of the plant were also considered in a review paper, which suggested that more research is required for more definitive medicinal recommendations.[8] This paper is a review about E. purpurea: Its phytochemical contents and its pharmacological and biological activities, along with common methods of plant extract analysis. In addition, the psychoactive and mosquitocidal effects of the plant are mentioned in this paper….

Alkamides have been analyzed with reverse-phase HPLC coupled with different detectors including UV spectrophotometric, coulometric electrochemical, and electrospray ionization mass spectrometric.[83,84] Furthermore, caffeic acid derivatives have been determined using reverse-phase HPLC or capillary electrophoresis (CE) with photodiode array (FDA) UV spectrophotometric detection.[85,86,87] Phenolic acids were analyzed by micellar benzoic acid electrokinetic chromatography (MEKC), both charged and uncharged analytes, based on the use of sodium deoxycholate (SDC), a surfactant in borate buffer (pH 9.2), as well as in the E. purpurea extract.[88] However, determination methods for both caffeic acid derivatives and alkamides have been developed in single analysis. Although it is a difficult process to separate these diverse constituents in one analysis, methods for the concurrent determination of caffeic acid derivatives and alkamides have the advantages of reduced time and sample size needed for the analysis.[85] Gradient elution on reverse-phase HPLC has been employed for concurrent analysis of caffeic acid derivatives and alkamides from E. purpurea using various detectors such as FDA UV spectrophotometric and electrospray ionization mass spectrometry (EIMS).[79,85] Simultaneous analysis of both mentioned derivatives has also been performed by electrophoresis with FDA UV spectrophotometric detector, together with sodium dodecyl sulfate and hydroxypropyl-β-cyclodextrin in Britton Robinson buffer (10 mM, pH 8.0).[89]”

Source: Pharmacogn Rev. 2015 Jan-Jun; 9(17): 63–72 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441164/)


Single Laboratory Validation of Ethanol in Kombucha Tea

by NaturPro in Uncategorized Comments: 0

Single Laboratory Validation of Ethanol in Kombucha Tea by Gas Chromatography with Flame Ionization Detection

The objective of this study was to ensure the validity of test results of ethanol in kombucha tea by performing single laboratory validation (SLV) of a method using gas chromatography with flame ionization detection (GC-FID).

Downloads:

SLV Study of Ethanol in Kombucha

Research News: SLV Study of Ethanol in Kombucha

AOAC SMPR

 

Why Verify, Then Trust?

by NaturPro in Uncategorized Comments: 0

“Verification” is the 2016 buzzword for food and supplements, due to the sequence of food safety crises that arguably started with salmonella in peanut butter in the early 2000s.  Recently, FSMA and the “Identity Crisis” for botanical ingredients in supplements have renewed the requirement for verification of quality and safety practices in the supply chain: raw materials, manufacturing practices and test methods being three big areas of focus.

“Trust But Verify” is attributed to President Reagan and later FDA and quality assurance folks. Although it is a well meaning mantra, doesn’t it make verification seem optional?  Shouldn’t we verify BEFORE trusting?

We do know that trust disappears soon after a failure to verify becomes apparent. From Salmonella in peanut butter, to misidentified plant extracts, to pesticides in unregulated medicinal plants — verification is how trust is ensured.

So while trust is the ultimate goal, verification comes first.

#verifythentrust

First published on LinkedIn, April 2016

2-Minute Tip: 6 Ways Ingredients Communicate Value

by NaturPro in Uncategorized Comments: 0

Product development is an increasingly painful process, taking weeks and months to sort through and evaluate ingredients.

That’s because the evaluation process involves cutting through the marketing fluff and understanding (and communicating) the core value of your product.  This makes it a difficult and time-consuming task for your customers.

Marshmallow fluff GinnyWhy should your customer pick your product or ingredient over all the others?  Because they are able to communicate it’s value.

Effective customer education  is one great way to help customers navigate the pitfalls of the product development process, and keep your product top of mind.  The results often include higher customer conversion and less wasted activity.

 Here’s a 2-Minute Tip listing a few things to be sure to include in your customer education materials:

2-Minute Tip: Six Ways Ingredients Communicate Value